A.2  Trigonometry

sin (a + b) = sin acos b + cos asin b.
(A.4)

sin (2a) = 2sin acos a.
(A.5)

cos (a + b) = cos acos b sin asin b.
(A.6)

cos (2a) = cos 2a sin 2a.
(A.7)

From A.7 and cos 2a + sin 2a = 1:

cos 2a = 1 2(1 + cos (2a))
(A.8)

and

sin 2a = 1 2(1 cos (2a)).
(A.9)

The following are some of the so-called product to sum identities:

cos (a)cos (b) = 1 2[cos (a b) + cos (a + b)].
(A.10)

sin (a)sin (b) = 1 2[cos (a b) cos (a + b)].
(A.11)

sin (a)cos (b) = 1 2[sin (a + b) + sin (a b)],
(A.12)

where a is the argument of the sine in Eq. (A.12).