A.2  Trigonometry

sin(a + b) = sinacosb + cosasinb.
(A.4)

sin(2a) = 2sinacosa.
(A.5)

cos(a + b) = cosacosb − sinasinb.
(A.6)

cos(2a) = cos2a − sin2a.
(A.7)

From Eq. (A.7) and cos2a + sin2a = 1:

cos2a = 1 2(1 + cos(2a))
(A.8)

and

sin2a = 1 2(1 − cos(2a)).
(A.9)

The following are some of the so-called product to sum identities:

cos(a)cos(b) = 1 2[cos(a − b) + cos(a + b)].
(A.10)

sin(a)sin(b) = 1 2[cos(a − b) − cos(a + b)].
(A.11)

sin(a)cos(b) = 1 2[sin(a + b) + sin(a − b)],
(A.12)

where a is the argument of the sine in Eq. (A.12).